«Цельс» — это платформа на базе искусственного интеллекта для анализа цифровых медицинских исследований. Системой пользуются частные и государственные клиники по всей России. По просьбе Purrweb ко-фаундер Цельса Никита Николаев рассказывает, как они входили в медтех без врачебного опыта и продают инновации государству.
Время чтения: 9 минут
Ищете слаженную команду разработки?
Поможем с дизайном и разработкой приложений для бизнеса и стартапов
Привет, это Никита. В 2017 году мы с ко-фаундерами основали «Цельс». К этому моменту у меня уже был стартап в финтехе, Fscorelab. Выяснилось, что технологии, которые мы использовали в кредитном скоринге, можно применить и в медицине. Но внедрять их в системе здравоохранения оказалось гораздо сложнее и интереснее.
«Цельс» объединяет компетенции врачей и ИИ для сохранения жизни и здоровья пациентов с онкологией
С Артемом Капнинским, моим будущим кофаундером, мы познакомились на деловой встрече. Тогда я рассказал ему, что в Fscorelab мы, в числе прочего, распознаем паттерны биометрии. Артем интересовался медицинским направлением. Мы разговорились о конкурсе Kaggle по распознаванию рака легких и поняли, что можем применить наш опыт в медтехе.
Когда мы начинали, в России не было нужного нам рынка. Поэтому на старте мы ориентировались на глобальный рынок ИИ, который оценивали с помощью международной аналитики и обзоров. Уже на тот момент во многих странах медицинский ИИ стремительно развивался, в том числе и в радиологии. Мы понимали, что скоро этот процесс развернется и в России.
С 1997 по 2021 год только FDA, Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США, утвердило почти 350 медицинских устройств с поддержкой ИИ
Потенциальную емкость будущего российского рынка приблизительно оценить было несложно. Подсчитать количество людей, которые проходят и которым нужно проходить регулярные обследования, учесть статистику о том, сколько процентов онкологии выявляется в рамках таких обследований и т.д.
Одним из самых перспективных направлений оказалась маммография, рентгеновский метод исследования молочных желез. Рак груди — один из самых распространенных, а выживаемость при раннем диагностировании рака — свыше 95%. Если ИИ повысит эффективность работы врачей, то мы быстрее увидим результат.
Еще одна причина — данные. Чтобы обучить медицинский ИИ, нужно много снимков с разметкой важных объектов: например, злокачественных и доброкачественных образований. По маммографии было немного данных с открытой лицензий, которые мы могли использовать для старта.
Мы начали проект с разработки простейшей ИИ-модели, и к работе почти сразу подключилась компания «Калуга Астрал», разработчик ПО для электронной отчетности, где работал Артем. Помимо меня и моего партнера по Fscorelab Евгения Никитина, со-учредителями компании стали два представителя «Астрала». Я занимался маркетингом и пиаром направления, Евгений — разработкой, другие фаундеры взяли на себя финансы, продажи и продвижение в медицинском сообществе. Артем Капнинский впоследствии стал отвечать за коммерцию и развитие бизнеса.
Так выглядел первый MVP медицинского ИИ для маммографии в 2018 году
Подготовительный этап длился около года, потому что, во-первых, мы одни из пионеров индустрии, а во-вторых, работаем в нише с высокими рисками. Цена ошибки — это жизнь и здоровье пациентов. Поэтому прежде чем выстраивать продукт, мы долго и тщательно собирали обратную связь: брали интервью у врачей, показывали им MVP, проводили детальный CustDev, делали Jobs to be done. И уже после оценивали, какие гипотезы стоит использовать: по визуалу, метрикам, работе ИИ.
Первые врачи, с которыми мы познакомились в ходе CustDev, стали нашими первыми разметчиками. Тогда, как и у всех на тот момент, у нас не было большого опыта работы с медицинскими данными, и мы наивно соединяли разметки двух врачей. Сейчас мы используем больше размеченных данных, более сложные алгоритмы работы, учим ИИ решать конфликты мнений.
Слева — исследование. Справа — снимок с врачебной разметкой
Поначалу многие относились к нашей затее скептически. У этого есть несколько причин:
Ко всем новинкам люди относятся с подозрением. Особенно к технологиям, с которыми еще не соприкасались. Электронные дневники, медицинские информационные системы тоже поначалу активно не принимали. Это нормальная практика.
У ранних ИИ было много недостатков. Рынка и правил еще не существовало, была лишь совокупность далеко неидеальных разработок и решений. Например, наша система отмечала все объекты грубыми «коробками», и было много гипердиагностики — выделения объектов, которые не нужны рентгенологу в работе.
Шаг за шагом мы совершенствовали систему: добавляли анализ более специфических патологий, утолщений кожи, текстовые заключения, обучали ИИ определять плотность желез, внедрили элементы изображения злокачественных патологий по квадрантам — более узким зонам груди.
Так выглядит разметка ИИ для маммографии
Учили ИИ в целом понимать, что перед ним. Например, бывают случаи, когда при калибровке оборудования что-то сбилось. Чтобы это проверить, приходит человек и ставит для снимка какую-нибудь банку молока. Если наш ИИ определит лапку котика на ее этикетке как патологию, то это испортит репутацию компании и снизит доверие к нам.
По мере совершенствования продукта и подключения новых медицинских направлений мы, как и другие разработчики, из раза в раз публиковали и доносили до государства и врачебного сообщества статистику о росте качества решений. Одновременно с этим мы учились работать с врачами и придумали, как расширять их опыт взаимодействия с технологиями.
Когда несколько моделей уже были готовы к тестовому внедрению, мы договаривались с Минздравами, онкодиспансерами и другими мед.учереждениями о запуске пилотных проектов.
Тогда мы узнали много нюансов об организации здравоохранения в России в целом и специфику отрасли ИТ в рентгенологии в частности. Например, что у разных регионов разные:
На самых первых этапах мы под разное оборудование по-разному настраивали модели, но практически сразу стало понятно, что с таким подходом далеко уехать не удастся. Тогда мы стали разрабатывать алгоритм, который бы позволил нам обрабатывать одинаково хорошо исследования с различными настройками.
Теперь мы интегрированы с рядом пак-систем, и тех, у кого они есть, мы подключаем быстро. Для других мы запускаем пилотные проекты с двумя сценариями тестирования:
Пилоты стали прекрасным инструментом продаж — в клиниках они снимают основные барьеры, а региональному госзаказчику помогают понять специфику ИИ-решения и начать подготовку госзакупки. Ведь чтобы ее подготовить, нужно сформировать техническое задание. Несколько некорректных формулировок могут испортить всю заявку. Тогда учреждения останутся ни с чем, и всю процедуру придется делать повторно. Мы пилотируем регионы, чтобы избежать этих ошибок — врачи понимают, как что устроено, что конкретно им нужно, а какие продукты они не хотят вообще.
На разных стадиях продукт существует в трех вариантах
Еще на старте мы понимали, что несколько лет будем работать почти без продаж, потому что:
Рынка не существовало. В 2017 году уже были ИИ для диагностики рака кожи, проекты с псевдо-ИИ для распознавания биометрии, первые симптом-чекеры. Решения были незрелыми, компаний было мало — не больше 20-40 во всей сфере. Для сравнения, к концу 2022 года только радиологических зарегистрированных проектов было около ста. Если считать незарегистрированные аутсорс-компании, то счет идет на несколько сотен.
Мы не могли обещать измеримые результаты. В B2B если твой продукт повышает прибыль организации, то она тебя покупает. В здравоохранении непонятно, как оценить жизнь и здоровье человека.
Не было правовой базы. Медицинский ИИ стал легальным в России только в 2020 году с приемом постановления Минздрава, где ИИ рекомендовали использовать и прописали, что он относится к медицинским изделиям. Без удостоверения продавать медицинский ИИ было в принципе нельзя. В 2020 году появились первые регистрации, единичные сделки. Мы получили первый сертификат медизделия в 2021 году.
Законодательная база дала нам возможность работать, но добавила новых сложностей. ИИ — это динамическая вещь, и первая версия продукта еще не означает, что продукт готов. Особенно сейчас, когда конкуренция растет. Продукт непрерывно в разработке. При этом законодательство меняется долго, а сертификат ИИ как медизделия в среднем получается около полутора лет, и получать его нужно отдельно для каждого продукта.
Мы получили первый сертификат медизделия в 2021 году
Преодолеть трехлетний этап работы без правовой базы нам помогли стартовые вложения акционеров компании. Только в 2020 году, спустя три года фактической работы, мы привлекли 180 миллионов рублей от венчурного фонда Kama Flow при Платформе НТИ. В том же году мы получили и первую серьезную выручку благодаря Московскому эксперименту.
Московский эксперимент начался весной 2020 года. В нем участвуют несколько сотен клиник по всей Москве и компании-производители медицинского оборудования, которые в них интегрируются.
Многие международные гиганты рынка не прошли первые функциональные тестирования и ушли, не вкладывая сил в интеграцию. Для таких компаний внедрение на российском рынке связано с бюрократическими трудностями — например, получением многочисленных сертификатов для регионов. Российские компании понимали, что для них игра стоит свеч, и не экономили силы. Нам Московский эксперимент давал шанс начать зарабатывать и занять долю на будущем рынке.
В рамках эксперимента мы интегрируемся в клиники и обрабатываем поток исследований. За каждое из успешно обработанных нам платят определенную сумму. Каждый год сумма меняется, каждые полгода или чаще обновляются требования к качеству и функциональности решений.
Параллельно с этим сильно расширилась наша продуктовая линейка, потому что чем больше направлений мы охватывали, тем больше исследований могли обрабатывать. Как правило, международные и российские компании фокусируются на 1-2 направлениях, а в нашей линейке их 4: маммография, флюорография, рентген и КТ мозга.
Каждое направление мы выбирали почти по тем же критериям, по которым выбрали маммографию на старте: емкость рынка, итоговая полезность, количество публичных данных, стоимость их разметки и доступность экспертов. Поначалу мы выпустили базовые продукты, функционально соответствующие требованиям эксперимента. Со временем мы превратили их в полноценные продукты.
Московский эксперимент помог нам расшириться
Только сейчас, в начале 2023 года, мы подходим к этапу, где у нас уже есть команда и продуктовая линейка, начинается формирование рынка и со стороны государства, и со стороны игроков. Растет количество компаний, корпорации вроде СберМедИИ расширяют направления для работы, к рынку активно присоединяются крупные игроки вроде Билайн и Ростелеком.
В 2023 году вступил в силу Указа Президента о внедрении как минимум одного решения на базе ИИ в каждом регионе страны. Регионам выделяются субсидии на внедрение, тиражируются московские и удачные региональные практики. В 2024 году запустится проект Единого цифрового контура, в рамках которого решений будет уже минимум три. Российский сегмент рынка троекратно вырастет.
В 2017-2018 годах фаундерам нужно было работать на интерес и привлекать долговременные инвестиции. Сейчас новый этап: есть понятные механизмы для получения прибыли, но растут требования к качеству и функциональности. Сейчас важны бизнес-модель и ее оптимальность, высокий уровень компетенции фаундеров, обмен опытом. По мере того как рынок растет, а возможностей заработка на нем становится больше, растет и процент умирания стартапов.
Меняется и подход к разработке. Например, раньше мы размечали все, что только могли, считая, что чем больше данных, тем лучше. Сейчас важнее специфические данные по тем патологиям, в которых нам требуется совершенствование метрик, и качественная разметка несколькими врачами.
Ландшафт медтех рынка меняется с каждым годом
Еще больше полезных материалов в нашем Telegram-канале Стартап-пикап.
Более 80% продаж «Цельса» связаны с государством. Часть из них привязана к Московскому эксперименту — по сути, гранту, где наша выручка привязана к количеству проведенных исследований. Сервис обрабатывает их 2-3 месяца, после этого рассчитывается субсидия. Вторая часть продаж — это госзакупки. Если мы выигрываем тендер, то поставляем и интегрируем софт в регион и обеспечиваем его поддержку.
Работа с государством влияет на экономику стартапа. Например, если у компании резко закончились деньги в связи с разработкой нового направления или потому что ожидаемый контракт отложили по временем, то не получится попросить заказчиков заплатить вперед. Наоборот, придется вносить банковскую гарантию (обеспечение) закупки.
Насколько публикация полезна?
Оцени эту статью!
3 оценок, среднее 5 out of 5.
Оценок пока нет. Поставьте оценку первым.
Так как вы нашли эту публикацию полезной...
Подписывайтесь на нас в соцсетях!
Читать
Ваша заявка уже у нас :)
Обычно ответ занимает от 12 до 24 рабочих часов.
Может, вы хотите запланировать онлайн встречу?
Извините, что-то пошло не так при отправке запроса.
Попробуйте позже.